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Abstract 

Background:  Ozone (O3) is an effective disinfectant agent that leaves no harmful residues. Due to the global health 
crisis caused by the COVID-19 pandemic, surgical masks are in high demand, with some needing to be reused in cer-
tain regions. This study aims to evaluate the effects of O3 for pathogen disinfection on reused surgical masks in various 
conditions.

Methods:  O3 generators, a modified PZ 2–4 for Air (2000 mg O3/L) and a modified PZ 7 –2HO for Air (500 mg O3/L), 
were used together with 1.063 m3 (0.68 × 0.68 × 2.3 m) and 0.456 m3 (0.68 × 0.68 × 1.15 m) acrylic boxes as well as a 
room-sized 56 m3 (4 × 4 × 3.5 m) box to provide 3 conditions for the disinfection of masks contaminated with envel-
oped RNA virus (105 FFU/mL), bacteria (103 CFU/mL) and fungi (102 spores/mL).

Results:  The virucidal effects were 82.99% and 81.70% after 15 min of treatment with 2000 mg/L O3 at 1.063 m3 and 
500 mg/L O3 at 0.456 m3, respectively. The viral killing effect was increased over time and reached more than 95% 
after 2 h of incubation in both conditions. By using 2000 mg/L O3 in a 1.063 m3 box, the growth of bacteria and fungi 
was found to be completely inhibited on surgical masks after 30 min and 2 h of treatment, respectively. Using a lower-
dose O3 generator at 500 mg O3/L in 0.456 m3 provided lower efficiency, although the difference was not significant. 
Using O3 at 2000 mg O3/L or 500 mg O3/L in a 56 m3 room is efficient for the disinfection of all pathogens on the 
surface of reused surgical masks.

Conclusions:  This study provided the conditions for using O3 (500–2000 mg/L) to reduce pathogens and disinfect 
contaminated surgical masks, which might be applied to reduce the inappropriate usage of reused surgical masks.
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Background
The current situation amid the novel coronavirus 2019 
(COVID-19) pandemic has caused economic recession 
as well as mental health crises around the world. Citizens, 
especially health care workers, are at risk of infection. The 
virus spreads between people through small liquid parti-
cles due to coughing, sneezing, speaking, or even breath-
ing. Infected secretions can remain in the air for several 

hours. The pathogen can survive on various surfaces for 
even longer periods depending on the type of material [1]. 
In addition to the coronavirus, bacteria or fungi can also 
be spread by exposure to air and environmental contami-
nants, including Staphylococcus aureus and Pseudomonas 
aeruginosa, which are common bacteria that cause infec-
tions in humans. Low immunity may cause infectious dis-
eases in wound areas, surgical wounds, and lung infections 
[2, 3] from airborne transmission within hospitals or from 
other sources of contamination. These pathogens may 
also contaminate medical personnel. In addition, there are 
strains of fungi that can be transmitted through the air in 
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the form of mycelium, mould, and spores such as Aspergil-
lus spp., leading to hypersensitivities such as allergy and 
asthma [4, 5]. Masks have been recommended as a poten-
tial PPE to address the COVID-19 pandemic outbreak and 
other airborne pathogens. Reuse of a surgical mask is not 
recommended but has occurred during the recent high 
usage demands. Effective methods for the industrial dis-
infection of face masks include the use of hydrogen perox-
ide vapour, ultraviolet radiation, moist heat, dry heat, and 
ozone gas [6]. However, the optimal conditions for the dis-
infection of surgical masks for reuse are still understudied. 
Ozone is a molecule made up of 3 oxygen atoms (O3) with 
an unstable structure that has the ability to undergo oxida-
tion reactions, making it toxic to microorganisms. Ozone is 
a gas that can spread over an area faster than regular liquid 
spraying. It undergoes oxidation with organic substances 
and can disinfect any inorganic substance in water and the 
air with a stronger sterilization effect on pseudoviruses, 
indicating that it can achieve coronavirus disinfection [7]. 
Several studies have shown that ozone can kill viruses on 
hard-to-reach surfaces, including the fabric structure of 
face masks, over a period of time [4] and that ozone kills 
99% of airborne viruses in a period of 15  min [8]. The 
downside is that ozone can cause skin damage and respira-
tory irritation, which means it must be used with caution. 
However, it is highly unstable and has a short half-life and 
is thus easy to remove. In summary, ozone is a good can-
didate for surgical mask disinfection; however, the effec-
tiveness of using ozone for disinfection depends on the 
concentration and time of treatment. Therefore, this study 
aims to investigate the efficacy of ozone against viral, bac-
terial, and fungal contamination on the surface of surgical 
masks. The results from this study will hopefully improve 
the understanding of the application of ozone in surgical 
mask disinfection.

Methods
O3 generator system
A modified  PZ 2–4 for Air, which produced 2000  mg 
O3/L, and a modified PZ 7 –2HO for Air, which produced 
500 mg O3/L, were used together with acrylic boxes. A box 
sized 0.68 × 0.68 × 2.3  m (1.063 m3) was made of 5  mm 
thick acrylic with a connector on each side of the box to 
be easily used with the modified  PZ 2–4 for Air O3 gen-
erator and to be opened for decontamination of the O3 

after completing the experiment by replacing the O3 
with O2, as shown in Fig.  1. A half-size box at 0.456 m3 
(0.68 × 0.68 × 1.15  m) capacity was constructed the same 
way (data not shown) for use with a smaller O3 generator, 
the modified PZ 7 –2HO for Air. Experimentation was per-
formed immediately after gaseous O3 from the O3 genera-
tor was introduced into the box until the O3 metre reached 
10 ppt. Disinfection of a contaminated mask in a room was 
performed in a room-sized 56 m3 (4 × 4 × 3.5 m) chamber 
at room temperature and humidity.

Viral preparation
Dengue virus, which is a representative RNA enveloped 
virus, was propagated in the C6/36 mosquito cell line in 
a T75 flask at a multiplicity of infection (MOI) of 0.1 [9]. 
The inoculated cells were incubated at 28 °C without CO2 
for 7 days before removal of the supernatant containing 
new progeny viruses. Infectious particles in the collected 
supernatant were tested by the focus-forming assay (FFA) 
followed by the indirect immunofluorescent assay (IFA).

Virus titration (focus forming assay)
Viral infectivity was evaluated and represented as focus 
forming units per millilitre (FFU/mL) by the focus form-
ing assay [10]. Briefly, monolayer Vero cells in Dulbecco’s 
modified Eagle’s medium (DMEM) (Gibco, USA) sup-
plemented with 10% foetal bovine serum (FBS) were 
prepared in a sterile 96-well plate one day before the 
experiment and incubated at 37  °C with 5% CO2. The 
supernatant containing the virus was diluted to 1:107 by 
DMEM on ice before being introduced to 50 µl of cells. 
Inoculated cells were incubated for 2  h with shaking 
every 30 min to allow viral infection. A sticky reagent (2% 
carboxymethyl cellulose (CMC) in DMEM) was added on 
top to limit viral spreading. Infected cells were incubated 
at 37 °C with 5% CO2 for 3 days before fixation and per-
meabilization by 4% formaldehyde in phosphate-buffered 
saline (PBS) (Sigma Aldrich, USA) and 0.1% Triton X-100 
in PBS (Sigma Aldrich, USA). Fixed cells were primed 
with a primary antibody specific to the dengue virus fol-
lowed by a secondary antibody labelled with Alexa488 for 
visualization under a fluorescence microscope. The num-
ber of foci was counted and calculated to determine the 
number of focus forming units (FFU)/mL [11].

Fig. 1  Acrylic box for connection to the O3 generator. Two pieces of 5 mm thick acrylic of size 0.68 × 1.15 (width × length) and 4 pieces of size 
0.68 × 0.68 (width × length) were used to construct the box. Each side of the acrylic was designed to have a 25 × 25 mm connector for connection 
with the O3 generator and for opening to replace the O3 gas with O2. A manual lock was provided on the door side, and wheels were connected for 
easy movement

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Efficiency of ozone efficiency for viral disinfection 
on contaminated surgical masks
The number of mask-contaminating pathogens was iden-
tified by a standard pathogen counting technique before 
and after ozone treatment under the various conditions. 
The variables included the concentration of ozone, con-
tainer size, and time of exposure. To evaluate the viral 
disinfection efficiency of ozone under various conditions, 
the optimal concentration of the virus was prepared for 
the test. A virus concentration of 105 FFU/mL was pre-
pared on ice, and 100  µl (10,000 FFU) was introduced 
to a sterile surgical mask sized 1 cm2 before placing it 
in a sterile petri dish. A dish with a contaminated mask 
was placed in 3 disinfectant conditions: 0.53 m3 with O3 
500 mg/L, 1.6 m3 with O3 2000 mg/L, 56 m3 with O3 500 
and 2000 mg/L, and with the cover open before running 
the machine. Time was counted from immediately after 
10 parts per trillion (ppt) were measured by the O3 meas-
urement machine (Prozone, Thailand). The contaminated 
mask was collected from each disinfectant condition 
after 0  min, 15  min, 30  min, 1  h and 2  h of O3 treat-
ment at room temperature in August in Thailand. For 
the decontamination of the mask at room temperature, 
4 h of O3 treatment was added. The contaminated mask 
was submerged in 200 µl of sterile DMEM to transfer the 
virus into the culture medium. The culture medium was 
subjected to FFA for comparison to the control virus at 
the starting point.

Efficiency of ozone for bacterial and fungal disinfection 
on contaminated surgical masks
To determine the antibacterial and antifungal activ-
ity of ozone, gram-positive and gram-negative bacteria, 
namely, Staphylococcus aureus (S. aureus) ATCC29213, 
Pseudomonas aeruginosa (P. aeruginosa) ATCC27803, 
and the fungus Aspergillus spp. were used as representa-
tive pathogens. The bacteria were subcultured in nutrient 
broth (NB) and incubated at 37  °C overnight. Subse-
quently, the organisms were washed by centrifugation 
and resuspended in 0.9% sodium chloride (normal saline 
solution), and the concentration was measured spec-
trophotometrically at 600  nm. Then, the bacteria were 
adjusted to the desired concentrations with normal saline 
solution.

For fungal preparation, Aspergillus spp. was cultured 
on Sabouraud dextrose agar (SDA) and incubated at 
25  °C for 3  days. The mould spores were transferred to 
0.1% peptone water by using a needle. Then, the spores 
were counted with a haemocytometer and adjusted to the 
required concentration with normal saline solution for 
the experiment.

The bacterial concentration of 103 colony forming 
units (CFU)/mL and the Aspergillus spp. concentration 

of 102 spores/mL were separately dropped onto a ster-
ile 1 cm2 piece of surgical mask and placed in a sterile 
petri dish. The dishes were placed in a small box (0.53 
m3; 500 mg/L) and a large box (1.6 m3; 2000 mg/L), and 
ozone was released through the channel at the cabinet 
base into the tank until the ozone density reached 10 ppt. 
The contaminated masks were collected from each disin-
fectant condition after 0 min, 15 min, 30 min, 1 h, and 2 h 
of O3 treatment. The fungus-contaminated masks were 
placed on the SDA. The bacteria-contaminated masks 
were cultured in sterile nutrient broth and placed on a 
Mueller–Hinton agar (MHA) surface. Then, the samples 
were incubated at 37 °C overnight to check the sterility of 
the contaminated masks [12, 13].

Results
Viral disinfection
At O3 concentrations of 2000 mg/L in a 1.6 m3 box and 
500 mg/L in a 0.53 m3 box, the infectious viral particles 
were inhibited by 82.99% and 81.70% after 15  min of 
treatment compared to the non-O3-treated virus control. 
The virucidal effect increased in a time-dependent man-
ner in both conditions: 87.71% and 86.75% at 30  min, 
95.59% and 88.64% at 1  h and 98.11% and 97.16% at 
2  h of incubation in 1.6 m3 and 0.53 m3 boxes, respec-
tively (Fig. 2). Compared to the virus control, the killing 
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Fig. 2  Percent virucidal effect of ozone treatment at different times 
of exposure. The virucidal effects of ozone were determined in a 0.53 
m3 box (black bars) and a 1.6 m3 box (light grey bars) after 0 min, 
15 min, 30 min, 1 h and 2 h of treatment. The dark grey bars show 
the percentage (%) death of the virus in a control tube without O3 
treatment. The data represent the mean and SD of the ozone killing 
effect, and the value of each is also shown in the table under the 
graph
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effect was also increased due to the fragile character of 
the virus at room temperature. To completely eliminate 
the virus, 2000 mg/L and 500 mg/L treatment for more 
than 2 h would be required. Regarding the killing effect 
of the virus in the room-sized space of 56 m3 with O3 
concentrations of 2000 mg/L and 500 mg/L, the amount 
of the virus was reduced by treatment with O3 from the 
beginning of treatment (83.98%), and the virucidal effect 
increased to 89.84%, 92.5%, 93.12% and 94.84% after 
15  min, 30  min, 1  h and 2  h of incubation (Fig.  3). The 
effect of O3 in decontamination depended on the concen-
tration and the treatment time.

Bacteria and fungus disinfection in a closed‑system ozone 
incubator
The P. aeruginosa, S. aureus and Aspergillus spp. disin-
fection capability of ozone was tested in a closed-system 
ozone incubator. The results showed that ozone treat-
ment in small- and large-box conditions could completely 
inhibit the growth of 103  CFU/mL P. aeruginosa and S. 
aureus on the mask after 60 and 30  min of treatment, 
respectively, as shown in Fig.  4. In addition, Aspergillus 
spp. at a concentration of 102 spores/mL was eliminated 
within 120  min. In addition, the results of the chamber 
sterilization experiment showed that bacterial micro-
organisms were disinfected within 4  h. However, fungal 
microorganisms were only partially disinfected (Fig. 5).

Discussion
Wearing a mask is one of the best practices to avoid 
COVID-19 spread and infection, as recommended by 
the World Health Organization (WHO. It could also be 
used for other pandemic infections. Several methods, 
such as high temperature, UV, ozone, and hydrogen per-
oxide, have been applied for the reuse, disinfection, and 
sterilization of disposable masks to avoid a lack of usage 
in crises and for safety. Each type of mask may require 
a different method depending on the material used in 
construction.

Here, we propose the application of O3 in a certain 
sized container for the reduction and elimination of bac-
teria and viruses on surgical mask material. A surgical 
mask is a widely used tool for medical staff in hospitals 
as well as ordinary people. However, studies concerning 
the reuse, disinfection, and sterilization of surgical masks 
are rare compared to those for N95 or filtering facepiece 
(FFP) respirators [14].

Our results indicated the effectiveness of low-dose 
O3 (2000  mg/L: 1.02  ppm and 500  mg/L: 0.26  ppm) in 
decontaminating surgical masks by reducing the amount 
and inhibiting the growth of viruses, bacteria, and fungi 
after 15 min, 30 min, and 2 h of treatment with O3 pro-
duced from the modified  PZ 2–4, which generates 
2000 mg O3/L in a 0.53 m3 box. The results are similar to 
the findings of previous studies in terms of the efficacy of 
O3 in killing pathogens on surfaces. Dennis et  al. found 
that gaseous O3 inactivated SARS-CoV-2. They also pro-
posed a practical recommendation to implement a simple 
O3 disinfection box for FFP respirators with 10–20 ppm 
O3 for at least 10 min. The literature suggests that ozone 
attacks capsid proteins in nonenveloped viruses and most 
readily attacks enveloped viruses [15, 16]. The effective-
ness of O3 for killing viruses depends on the relative 
humidity, temperature, and type of virus, as shown in 
Dubuis et  al. 2020, who reported that a higher effect of 
low-dose O3 exposure (0.23–1.23 ppm) for the inactiva-
tion of norovirus was found at 85% relative humidity 
(RH) for 40 min norovirus, while 20% RH for 10 min gave 
the same result for bacteriophages. These results sug-
gested that high RH should be used together with O3 to 
obtain a powerful disinfectant for airborne viruses, which 
could be implemented inside hospital rooms that are 
ventilated naturally. However, this study was performed 
under temperature and humidity conditions in August 
in Thailand without measuring the exact temperature 
and RH, although the average temperature was 28 °C and 
the average relative humidity was 83.2% according to the 
August 2020 agrometeorological report by the meteoro-
logical department [17].

Gram-negative bacteria and fungi require more time 
for decontamination. There are many reports of O3 

Virucidal Effect (room)

%
 V

iru
ci

da
l

0 15 30 1 hr 2 hr
75

80

85

90

95

100

Time of exposure
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Fig. 4  Potential of O3 to kill a P. aeruginosa b S. aureus and c Aspergillus spp. at different intervals (0 min, 15 min, 30 min, 1 h, and 2 h) in the small 
box (0.53 m3) and large box (1.6 m3) compared to the untreated control
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lowering the number of bacteria, viruses, and bacte-
rial spores on the surfaces of materials, including figs, 
fabrics, and plastics, at a relatively low concentration of 
1–25  ppm in an average time of 1–4  h [18, 19]. These 
results link to this study and the experiment of P. aerugi-
nosa and S. aureus closed-system disinfection in a closed 
system, which showed that bacteria at a concentration of 
103 CFU/mL were eliminated within 30 min, and cham-
ber sterilization was achieved within 4 h. Moreover, this 
experiment successfully achieved the fungal inactivation 
of Aspergillus spp. by ozone in a closed-system ozone 
incubator within 120  min. This can be related to previ-
ous studies that showed similar results for fungal inacti-
vation. Wood et al. reported on the inactivation of spores 
of Bacillus anthracis and Bacillus subtilis on building 
materials by O3 [20]. O3 can diffuse through the cell 
membrane, and attacking glycoproteins and glycolipids 
in the cell membrane results in the rupture of pathogen 
cells. Moreover, O3 attacks the sulfhydryl groups of cer-
tain enzymes, resulting in disruption of normal cellu-
lar enzymatic activity and loss of function. Ozone also 
attacks the purine and pyrimidine bases of nucleic acids, 
damaging DNA [21, 22]. The advantages of ozone gas are 
that it reaches shadows and crevices in the process of dis-
infection, unlike ultraviolet radiation which has a short 
half-life in an airflow environment. The immediately dan-
gerous to life or health concentration (IDLH) of ozone is 
5 ppm for humans. Exposure to 50 ppm for 60 min will 

probably be fatal to humans [23]. Therefore, a low dose 
in a closed system should be used to avoid direct contact. 
However, O3 gas can be exchanged quickly by O2, and the 
odour of O3 is detectable by many people at low concen-
trations of 0.1 ppm in air in a home environment with air 
changes per hour varying between 5 and 8 ACH. Ozone 
has a half-life as short as 30  min [24], and the reaction 
proceeds faster at higher temperatures (Earth Science 
FAQ in the picture). Our experiment used a generator 
machine that produced 2000 mg/L in a 0.53 m3 box.

This study also supported previous studies showing 
that treatment with ozone causes very low degradation 
to fibrous structures or the fit of surgical masks. This 
is unlike other decontamination procedures, such as 
UV treatment, which enables reuse a limited number of 
times because of negative side effects, including defor-
mation of the elastic, the accumulation of humidity, 
and destruction of the fibrous material. This suggested 
that O3 treatment could maintain the filtration capacity 
of a mask for reuse more than 30 times [25].

Only 2 sizes of container and 2 concentrations of O3 
were used in this study. The temperature and humidity 
during the experiment were not fixed, which may affect 
the disinfectant efficiency of ozone, and the filtration 
capacity of the surgical mask was not determined.

Conclusions
In conclusion, the results of this study supported the 
possibility of using O3 as an effective procedure for the 
decontamination of reused surgical masks at a dose of 
2000  mg/L O3 in a 0.53 m3 box for 2  h, which could 
decontaminate surgical masks for reuse by reducing 
and eliminating the level of pathogens, including bac-
teria, viruses, and fungi. Longer exposure times lead to 
greater viral inactivation. Nevertheless, risks for user 
safety and health remain. Therefore, ozone should be 
used and handled properly.
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